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ABSTRACT

Let G be a finite group and let k be a field. We say that G is a projective

basis of a k-algebra A if it is isomorphic to a twisted group algebra kαG

for some α ∈ H2(G, k×), where the action of G on k× is trivial. In a

preceding paper by Aljadeff, Haile and the author it was shown that if

a group G is a projective basis of a k-central division algebra, then G is

nilpotent and every Sylow p-subgroup of G is on the short list of p-groups,

denoted by Λ. In this paper we complete the classification of projective

bases of division algebras by showing that every group on that list is a

projective basis for a suitable division algebra.

We also consider the question of uniqueness of a projective basis of a

k-central division algebra. We show that basically all groups on the list Λ

but one satisfy certain rigidity property.
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1. Introduction.

Let k be a field. Let A be a k-central simple algebra. A basis {a1, a2, . . . , an}
of A is called a projective basis if all ai-s are invertible and for every pair

i, j there is an m such that aiaj = λijam for some λij ∈ k×. It is not difficult

to see that A has a projective basis if and only if it is isomorphic to a twisted

group algebra kαG, for some finite group G and some α ∈ H2(G, k×), where

the action of G on k× is trivial. The most important examples of algebras with

projective bases are the symbol algebras. Recall that a k-central simple algebra

B of dimension n2 is a symbol algebra if B is generated by two elements x and

y with relations xn ∈ k×, yn ∈ k×, xy = ξnyx (ξn is a primitive n-root of

unity contained in k). It is easy to see that B is isomorphic to kα(Zn × Zn)

for a suitable α ∈ H2(Zn ×Zn, k×), where Zn denotes the cyclic group of order

n. In fact, if G is abelian and kαG is a k-central simple algebra then G is

of symmetric type (i.e., ∼= H × H for some abelian group H) and kαG is

isomorphic to a tensor product of symbol algebras (see e.g., [4, Theorem 1.1]).

Central simple algebras with projective bases appear in the theory of G-

graded algebras. Recall that an (associative) algebra A over a field k is graded

by a group G if A decomposes into the direct sum of k-vector subspaces A =⊕
g∈G Ag such that AgAh ⊆ Agh for any g, h ∈ G. A G-grading on A is called

fine if dimk(Ag) ≤ 1 for all g ∈ G (see [5] for more details). Clearly, if A

is isomorphic to a twisted group algebra kαG then it is endowed with a fine

G-grading over k. Conversely, it is shown in [3, Theorem 1], that the support

Supp A = {g ∈ G : Ag 6= 0} of a fine G-grading on a k-central simple algebra A

is a projective basis of A.

Groups G which are projective bases of central simple algebras are of special

interest in the representation theory of finite groups. Recall that the dimension

of an irreducible representation of a finite group Γ is not greater than the square

root of [Γ : Z(Γ)], where Z(Γ) denotes the center of Γ. By definition, the group

Γ is of central type if it admits an irreducible representation of the maximal

possible dimension
√

[Γ : Z(Γ)]. A remarkable result of DeMeyer and Janusz

establishes that Γ is of central type if and only if every Sylow p-subgroup Sp

of Γ is of central type and Z(Sp) = Z(Γ)
⋂

Sp ([6, Theorem 2]). Isaacs and

Howlett proved, using the classification of finite simple groups, that if Γ is of

central type then it is solvable ([7, Theorem 7.3]).
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If Γ is a group of central type and G = Γ/Z(Γ), then the irreducible represen-

tation of Γ of dimension
√

[Γ : Z(Γ)] induces a projective representation of G

(of the same dimension), and so there exists a cohomology class α ∈ H2(G, C×),

such that CαG ∼= Mn(C). By abuse of notation, we will call such G a group of

central type as well. In fact, it is easy to see that a group G is of central type

in this new sense if and only if G ∼= Γ/Z(Γ), where Γ is some group of central

type in the classical sense. Note, that the result of Isaacs and Howlett holds for

a group of central type in the new sense as well. Also, if G is of central type,

then every Sylow p-subgroup of G is of central type ([6, Corollary 4]). In this

paper we will use the notion of a group of central type only in the new sense.

In [1] Aljadeff and Haile analyzed division algebras which contain projective

bases G. In particular, they obtained two necessary conditions on the group G.

Theorem 1: If kαG is a division algebra with center k, then G is nilpotent

and its commutator subgroup is cyclic ([1, Theorems 1 and 2]).

It follows by the nilpotency condition that a k-central division algebra kαG

is isomorphic to kα1P1 ⊗ kα2P2 ⊗ · · · ⊗ kαmPm, where P1, P2, . . . , Pm are the

Sylow p-subgroups of G and αi is the restriction of α to Pi. Conversely, if

P1, P2, . . . , Pm are p-groups (for m different primes) and kαiPi is a k-central

division algebra for all i, then kα1P1⊗kα2P2⊗· · ·⊗kαmPm is a division algebra

with projective basis G ∼= P1 × · · · × Pm. This reduces the analysis of such

algebras to the case where G is a p-group.

In [2, Corollary 3] there is a (short) list Λ of p-groups containing all p-groups

which possibly are projective bases of division algebras. The list Λ consists of

three families of groups G:

1. G is abelian of symmetric type, that is G ∼=
∏

(Zpni × Zpni ),

2. G ∼= G1 × G2 where

G1 = Zpn ⋊ Zpn = 〈π, σ | σpn

= πpn

= 1 and σπσ−1 = πps+1〉

where 1 ≤ s < n and 1 6= s if p = 2, and G2 is an abelian group of

symmetric type of exponent ≤ ps,

3. G ∼= G1 × G2 where

G1 = Z2n+1⋊(Z2n×Z2) =

〈
π, σ, τ

∣∣∣∣
π2n+1

= σ2n

= τ2 = 1, στ = τσ,

σπσ−1 = π3, τπτ−1 = π−1

〉

and G2 is an abelian group of symmetric type of exponent ≤ 2.

For the reader convenience we record [2, Corollary 3] in the following theorem.
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Theorem 2: If a p-group G is a projective basis of a division algebra then G

is in Λ.

The main purpose of this paper is to complete the classification of projective

bases of division algebras, begun in [2], by showing that every group on the list

Λ is a projective basis for a suitable division algebra over an appropriate field.

Thus, combining this with Theorems 1 and 2 we have the following result:

Theorem 3: Let G be a finite group. Then there exist a field k and a cohomol-

ogy class α ∈ H2(G, k×) such that the twisted group algebra kαG is a k-central

division algebra if and only if G is nilpotent and all Sylow p-subgroups of G are

in Λ.

Now, combining Theorem 3 with [3, Theorem 1] we obtain a complete classi-

fication of the groups which support fine gradings on finite dimensional division

algebras over their centers.

Theorem 4: Let G be a finite group. Then there exist a field k and a k-central

division algebra D with a fine grading such that SuppD = G if and only if G

is nilpotent and all Sylow p-subgroups of G are in Λ.

Next we consider the question of uniqueness of a projective basis of a k-central

division algebra.

Question (Strong rigidity): Let kαG and kβH be isomorphic k-central division

algebras. Is necessarily G ∼= H?

The answer is negative in general. One can build a division algebra which

has two nonisomorphic abelian projective bases, see e.g. the construction in [11].

Moreover, it is shown in [2, proof of Theorem 13] that any k-central division

algebra of the form kα(Z4 ⋊ (Z2 ×Z2)) is isomorphic to kβ(Z2 ×Z2 ×Z2 ×Z2)

for a suitable β ∈ H2((Z2)
×4, k×). The second objective of this paper is to

show that the group Z4 ⋊ (Z2 × Z2) is basically the only group on the list Λ

which does not satisfy the following weak version of rigidity.

Definition 5: We say that a group G satisfies weak rigidity if there exist a field

k and a cohomology class α ∈ H2(G, k×) such that kαG is a k-central simple

algebra and if kαG ∼= kβH for some H and β ∈ H2(H, k×) then H ∼= G.

Our result is given in the following theorem.
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Theorem 6: If a group G ∈ Λ has no direct factor isomorphic to Z4 ⋊ (Z2×Z2),

then G satisfies weak rigidity.

2. Realization.

In this section we prove Theorem 3. Of course, we have to show only one

direction (namely, the part “if” of the theorem). In case (I) below we exhibit

the construction of a division algebra with projective basis G = Zpn ⋊ Zpn

(cf. [1, p. 192]). Next, in case (II) we realize the group Z2n+1 ⋊ (Z2n × Z2)

as a projective basis of division algebra, and then, in case (III), we show how

to realize arbitrary p-groups on the list Λ. All the realizations are similar and

done over the field of iterated Laurent series k = K((t1))((t2)) . . . ((tN )) where

the field K and N depend on G.

(I) Let G = 〈π, σ | σpn

= πpn

= 1, σπσ−1 = πps+1〉, s ≤ n and s 6= 1 if

p = 2. (It is an abelian group when s = n).

Let K be a field of characteristic zero that contains a primitive ps-root of

unity ξ and does not contain primitive ps+1 roots of unity. For any c ∈ K×, let

L = K(uπ)/K be a cyclic Galois extension defined by upn

π = cpn−s

ξ with the

Galois group Gal(L/K) ∼= Zpn . Since c−1ups

π is a primitive pn-root of unity, a

generator σ of the Galois group of L can be chosen such that σ(uπ) = c−1ups+1
π .

Let t be an indeterminate and let k = K((t)) be the field of iterated Laurent

series over K. Consider the field L((t)) ∼= L⊗KK((t)) which is a cyclic extension

of K((t)) with the same Galois group 〈σ〉 as that of L. Consider the cyclic

crossed product D = (L((t))/k, σ, t), that is D =
⊕pn−1

i=0 L((t))ui
σ as an L((t))-

vector space with the multiplication given by uσb = σ(b)uσ for any b ∈ L((t))

and upn

σ = t. We claim that the group G is a projective basis of D. Indeed,

let Γ denote the multiplicative subgroup of D× generated by uπ and uσ. Then

D = k(Γ), that is, D is generated by Γ as a k-vector space. It is easy to see

that k×Γ/k× ∼= G and D ∼= kαG where α corresponds to the central extension

1 → k× → k×Γ → G → 1. Observe that in case that G is abelian, the algebra

constructed above is isomorphic to the symbol algebra (cξ, t)pn .

It is well-known that D is a division algebra. One way to show this is to

view D as a ring of twisted Laurent series over the field L in the variable uσ.

Namely, D = L((uσ; σ)) =
{∑

i≥k aiu
i
σ : k ∈ Z, ai ∈ L

}
with the multiplication

on L((uσ; σ)) given by uσb = σ(b)uσ for any b ∈ L, where σ is the automorphism
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of L defined above. This proves that D is a division algebra (see [8, Example

1.8]). We use this argument in cases (II) and (III) below.

(II) G = Z2n+1 ⋊ (Z2n ×Z2) =

〈
π, σ, τ

∣∣∣∣
π2n+1

= σ2n

= τ2 = 1, στ = τσ,

σπσ−1 = π3, τπτ−1 = π−1

〉
.

Let K be a field of characteristic zero that does not contain
√
−1,

√
2 and√

−2. For any c ∈ K× such that c2n

/∈ 4K4, we let L = K(uπ)/K be a

Galois extension defined by u2n+1

π = −c2n

. The Galois action of Gal(L/K) ∼=
Z2n × Z2 = 〈σ, τ〉 on L is given by

σ(uπ) = c−1u3
π and τ(uπ) = cu−1

π .

Let D1 = L((uσ; σ)) be a ring of twisted Laurent series over L in a variable uσ.

As above, it is a division algebra. Next, let D = D1((uτ ; τ)) be a ring of twisted

Laurent series over the algebra D1 in a variable uτ , where the automorphism τ

of D1 extends the action of τ on L and the action on uσ is trivial. Since D1 is

a division algebra, D is a division algebra as well.

It is easy to see that the center k of D is generated by the field K = L〈σ,τ〉

and the elements s = u2n

σ and t = u2
τ , namely, k = K((s))((t)). Moreover, the

field L((s))((t)) which is a Galois extension of k with the Galois group 〈σ, τ〉,
is a maximal subfield of D. That is, D is isomorphic to the crossed product

(L((s))((t))/k, 〈σ, τ〉, f). The elements uσ and uτ represent σ and τ in D and

the 2-cocycle f is given by

u2n

σ = s, u2
τ = t and (uσ, uτ ) = 1,

where (uσ, uτ ) denotes the commutator of uσ and uτ . Finally, arguing as in the

previous case we see that D is isomorphic to a twisted group algebra kαG for

an appropriate class α ∈ H2(G, k×).

(III) We complete the realization of p-groups as follows. Let G be a group

on the list Λ. Write G = G0 × Zpr × Zpr . We assume, by induction, that the

subgroup G0 is realizable as a projective basis of a division algebra, namely,

that there exist a field K and a cohomology class β ∈ H2(G, K×), such that

D0 = KβG0 is a division algebra. We may assume also that K contains a

primitive pr-root of unity. Let k = K((s))((t)) where s, t are indeterminates,

and consider the k-algebra D = kβG0 ⊗k (s, t)pr , where kβG0
∼= KβG0 ⊗K k

and (s, t)pr is a symbol algebra. Clearly, D ∼= kαG for some α ∈ H2(G, k×),

such that resG
G0

(α) = β, that is, G is a projective basis of D.
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We now show that D is a division algebra. Let x and y be standard generators

of the symbol (s, t)pr , that is xn = s, yn = t and xy = ζyx (ζ is a primitive

pr-root of unity). Let D1 = D0((x)) be a ring of Laurent series in the variable

x over D0 = KβG0. Since D0 is a division algebra it follows that D1 is a

division algebra as well. Now, let D1((y; τ)) be a twisted Laurent series ring

over D1 in the variable y, where the automorphism τ of D1 is trivial on D0 and

τ(x) = ζ−1x. Clearly, D ∼= D1((y; τ)) and hence D is a division algebra.

(IV) Now, let G be a nilpotent group. Write G as a direct product G =

P1 × · · · × Pm of its Sylow pi-subgroups. Suppose Pi ∈ Λ for all 1 ≤ i ≤ m.

For every i, we can construct, as above, a field ki and a cohomology class

αi ∈ H2(Pi, k
×
i ) such that kαi

i Pi is a division algebra. Moreover, we can choose

the field ki to be Q(ξi)((t1)) . . . ((tNi
)), where ξi is a psi

i -primitive root of unity,

for a suitable number of indeterminates Ni. Let ξ =
∏

i ξi be a root of unity of

order
∏

i psi

i and let Ki = Q(ξ)((t1)) . . . ((tNi
)). Observe that since Ki does not

contain psi+1
i -primitive roots of unity, precisely the same construction of αi ∈

H2(Pi, K
×
i ) as in (I–III) gives a division algebra Kαi

i Pi. Consider K1, . . . , Km as

subfields of k = Q(ξ)((t1)) . . . ((tN )), where N = maxi(Ni). For all 1 ≤ i ≤ m,

let Di = Kαi

i Pi ⊗ k. By [9, Corollary 19.6 a], we see that Di is a division

algebra. Finally, D = D1 ⊗k · · · ⊗k Dm is a division algebra, since all Di have

relatively prime degrees, and G is a projective basis of D.

This completes the proof of Theorem 3.

We close this section by pointing out that in all of our constructions we may

replace Laurent series by rational functions. Indeed, given a group G as in

(IV), we may follow the above construction but now over an appropriate field

of rational functions of the form Q(ξ)(t1, . . . , tN ), to obtain a central simple

algebra A. This algebra restricted to the Laurent series field Q(ξ)((t1)) . . . ((tN ))

is a division algebra and therefore A is a division algebra as well.

3. Rigidity.

In this section we prove Theorem 6.

We first prove the theorem for abelian p-groups. Let G be an abelian group

of symmetric type, that is G =
∏ℓ

k=1 Zpnk × Zpnk . We construct a division

algebra D such that any projective basis of D is isomorphic to G. Let F =

C((t1)) . . . ((tN )), N ≥ 2ℓ, denote the N -fold iterated Laurent series field over

C (the Amitsur field). Consider the set of symbol algebras {(t2k−1, t2k)pnk }ℓ
k=1

over the field F , and let ik, jk be their standard generators (ik and jk satisfy
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ip
nk

k = t2k−1, jpnk

k = t2k and ikjk = ξpnk jkik where ξpnk is a primitive pnk -root

of unity). Let

(1) D =

ℓ⊗

k=1

(t2k−1, t2k)pnk .

Clearly D is isomorphic to a twisted group algebra FαG for an appropriate

class α ∈ H2(G, F×). Moreover, D is a division algebra by [13, Example 3.6

(a)].

Proposition 7: Let G, F and D ∼= FαG be as above. Let H be a group and

β ∈ H2(H, F×). If D ∼= F βH then G ∼= H .

In order to prove the proposition we view D as a valued tame and totally

ramified (TTR) division algebra over F .

Let us recall some definitions and notation related to valuations on division

algebras (cf. [13]). Let v be a valuation on an F -central division algebra D

with values in a totally ordered abelian group Γ. We let ΓD = v(D×) and ΓF =

v(F×) be the value group of v on D and F , respectively. The algebra D is called

tame and totally ramified over F with respect to v if |ΓD : ΓF | = [D : F ]

and char(F) ∤ [D : F], where F is the residue class field of F .

We now define a valuation on the Amitsur field F = C((t1)) . . . ((tN )) and its

extension to the division algebra D defined in (1). Consider the group ZN with

the right-to-left lexicographic order. There is a valuation v on F with values in

ZN :

v

( ∑

i1

· · ·
∑

iN

ci1...iN
ti11 · · · tiN

N

)
= min{(i1, . . . , iN) | ci1...iN

6= 0}.

The valuation v is called the standard valuation on F . Its value group is

ΓF = ZN and its residue field is F = C.

The division algebra D defined in (1) has a valuation v : D× → QN which

extends the standard valuation v on F :

v(ik) = 1/pnkv(t2k−1) = (0, . . . , 0, 1/pnk , 0, . . . , 0),(2)

v(jk) =
1

pnk
v(t2k) = (0, . . . , 0, 1/pnk, 0, . . . , 0),

(with nonzero entries in the 2k − 1 and 2k positions respectively). With re-

spect to the valuation v we have ΓD = 〈v(i1), v(j1), . . . , v(jℓ)〉 + ΓF , and so
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ΓD/ΓF (the relative value group of D with respect to v) is isomorphic to∏ℓ

k=1 Zpnk × Zpnk (∼= G). Therefore, the division algebra D is TTR over F .

Next, we recall the notion of armature ([13]) which is basically the same as

the notion of an abelian projective basis:

Definition 8: Let A be a finite-dimensional F -algebra. Let A be a (finite) sub-

group of A×/F× and a1, a2, . . . , an be a representatives of the elements A in

A. We say A is an armature of A if A is abelian and {a1, a2, . . . , an} is an

F -base of A.

Clearly, the group generated by {ikF×/F×, jkF×/F×}ℓ
k=1 in D×/F× is an

armature of D. The following result (due to Tignol and Wadsworth, [13, Propo-

sition 3.3]) establishes that the armature of the algebra D is uniquely determined

by its relative value group.

Proposition 9: Let (D, v) be a valued division algebra with D tame and

totally ramified over its center F . If A is an armature of D as an F -algebra

then the map v : A → ΓD/ΓF induced by v is an isomorphism.

Now, we can prove Proposition 7.

Proof. Let H be an abelian group and suppose there exists a cohomology class

β ∈ H2(H, F×) such that F βH ∼= D. Note that B = 〈uσF×/F× | σ ∈ H〉 ∼= H

is an armature of D. By Proposition 9, B is isomorphic to the relative value

group ΓD/ΓF with respect to the valuation v defined in (2). Since ΓD/ΓF
∼= G,

we get G ∼= H .

A nonabelian group cannot form a projective basis of a division algebra over

the Amitsur field F , because F contains all roots of unity (see [1, Section 2]).

Hence the algebra D has no nonabelian projective basis and the proposition

follows.

It remains to prove Theorem 6 for nonabelian groups.

Case I: G = (Zpn ⋊Zpn)×Zpr2 ×Zpr2 ×· · ·×Zprℓ ×Zprℓ with a set of generators

π, σ, γ3, . . . , γ2ℓ. Assume that G′ = 〈πps〉 (s ≥ 1, or s ≥ 2 when p = 2) and,

therefore, rk ≤ s for all 2 ≤ k ≤ ℓ.

For N = 2ℓ define K = Q(ξ)((t1)) . . . ((tN )) where ξ is a primitive ps-root of

unity. It was shown in the previous section (see (I), (III)) that there is a class

α ∈ H2(G, K×) such that D ∼= KαG is a division algebra. Namely, we let D
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be a tensor product of the form D = D1 ⊗ D2 ⊗ · · · ⊗ Dℓ, where D1 is a cyclic

algebra generated by the elements uπ and uσ subject to the following relations:

upn

π = tp
n−s

1 ξ, upn

σ = t2 and (uσ, uπ) = t−1
1 ups

π ,

and for all 2 ≤ k ≤ ℓ, Dk is the symbol algebra (t2k−1, t2k)prk .

We claim that the algebra D is of exponent pn. Indeed, the algebra D1 is

isomorphic to a cyclic algebra of the form
(
Q(ξ)((t1))(uπ)((t2)), σ, t2

)
⊗Q(ξ)((t1))((t2))

K

and it is of exponent pn by [9, Corollary 19.6 b and Corollary 19.6 a]. Fur-

thermore, the symbol Dk is of exponent prk ≤ ps < pn for all k, and the claim

follows.

Suppose that D is isomorphic to KβH for some H and β ∈ H2(H, K×).

Observe that H is not abelian, for, otherwise, by [4, Theorem 1.1], KβH is a

tensor product of symbol algebras, and hence exp(KβH) ≤ ps - the number

of p-power roots of unity in the field K, a contradiction. Therefore, by [2,

Theorem 1], H is of the form (Zpm ⋊ Zpm)×B where generators x and y of the

semidirect product Zpm ⋊ Zpm satisfy xpm

= ypm

= 1 and yxy−1 = xps+1 and

B = Zpf1 × Zpf1 × · · · × Zpf × Zpf is abelian of symmetric type of exponent

≤ ps.

Consider the subalgebra Kβ(Zpm ⋊ Zpm) of KβH . By the Factorization

Lemma in [1] it can be factored from KβH , that is there exists a 2-cohomology

class β̃ on B ∼= H/(Zpm ⋊ Zpm) such that:

KβH ∼= Kβ(Zpm ⋊ Zpm) ⊗ K β̃B.

Since B is abelian, by [4, Theorem 1.1], K β̃B is a product of symbol algebras

of the form:

K β̃B =

⊗

k=1

(a2k−1, a2k)pfk .

In particular, it follows that the algebra KβH is of exponent at most pm.

We claim that m = n. First, if m < n then exp(KβH) ≤ pm < pn = exp(D),

a contradiction. To see that m ≤ n, we restrict D = D1 ⊗ · · · ⊗ Dℓ to the

Amitsur field F = C((t1)) . . . ((tN )) ∼= K ⊗Q(ξ) C.

Consider the subfield E = K(z) of D1 where z = ups

π /t1. By [10, Proposition

7.2.2] D1 ⊗ E is Brauer equivalent to the centralizer CD1
(E) of E in D1. It is

easy to see that CD1
(E) = K(uπ, upn−s

σ ), and it is isomorphic to the symbol
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algebra (t1z, t2)ps over the field E. Since z = ups

π /t1 is a primitive pn-root of

unity, it follows that D1 ⊗ F ∼= D1 ⊗K K(ζ) ⊗K(ζ) F ∼ (t1ζ, t2)ps where ζ is a

primitive pn-root of unity in C. Since the symbol algebra (t1ζ, t2)ps is Brauer

equivalent to (t1, t2)ps over F ([10, Proposition 7.1.17]) we have:

(3) D ⊗K F ∼ (t1, t2)ps ⊗F (t3, t4)pr2 ⊗F · · · ⊗F (t2ℓ−1, t2ℓ)prℓ .

Since the latter is a TTR division algebra we have that

ind(D ⊗ F ) = ind(D)/pn−s.

Now consider the multiplicative subgroup H of (KβH)× generated by repre-

sentatives of H in KβH . Observe that H is center by finite, so by a theorem

of Schur [12, Chapter 2, Theorem 9.8] its commutator subgroup H′ is finite. It

is easy to see that K×H′/K× = H ′. Since the commutator subgroup H ′ of

H is of order pm−s it follows that KβH contains a cyclotomic field extension

KβH ′/K of degree pm−s and hence ind(KβH ⊗ F ) ≤ ind(KβH)/pm−s. Thus,

we have m ≤ n and the claim follows.

Now, write H = (Zpn ⋊Zpn)×Zpf1×Zpf1 ×· · ·×Zpf ×Zpf , and let x and y be

generators of the semidirect product Zpn ⋊ Zpn . Let ux, uxps be representatives

of x and xps

in KβH . Since the field KβH ′ = K(uxps ) is a cyclotomic extension

of K, we may assume that upn−s

xps = ξ. There is an element a ∈ K× such that

ups

x = auxps . It follows that upn

x = apn−s

ξ. Since 〈x〉 is a normal subgroup of

H , by [1, Lemma A] we have that K(ux)/K is a Galois field extension which

is cyclic of order pn. Moreover, conjugation by representatives uh, h ∈ H of

KβH induces a surjective homomorphism H/〈x〉 → Gal(K(ux)/K). It follows

that conjugation by a representative uy of y induces a Galois action on K(ux),

and we may assume (choosing a new generator y if necessary) that uyuxu−1
y =

a−1ups+1
x . Also, there is an element b ∈ K× such that upm

y = b. As in the claim

above, we have that Kβ(Zpn ⋊ Zpn) ⊗ F (where F is the Amitsur field defined

above) is similar to the symbol algebra (a, b)ps . Hence, by an index argument we

have that (a, b)ps ⊗⊗
k=1(a2k−1, a2k)pfk is a division algebra, and, furthermore,

it is isomorphic to the algebra obtained in (3). Then, applying Proposition 7,

we get Zps × Zps × Zpr2 × Zpr2 × · · · × Zprℓ × Zprℓ
∼= Zps ×Zps ×B and hence

G ∼= H as well.

Case II: G = (Z2n+1 ⋊ (Z2n × Z2)) × Z2 × Z2 × · · · × Z2 × Z2 (where n > 1)

with a set of generators π, σ, τ, γ4, . . . , γ2ℓ+1.
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We define K = Q((t1)) · · · ((tN )), with N = 2ℓ + 1, and construct a division

algebra D ∼= KαG as follows (see (II) of the previous section):

D = D1 ⊗ (t4, t5) ⊗ · · · ⊗ (t2ℓ, t2ℓ+1),

where D1 is generated by elements uπ, uσ and uτ satisfying the following rela-

tions:

u2n+1

π = −t2
n

1 , u2n

σ = t2, u2
τ = t3,

(uσ, uπ) = t−1
1 u2

π, (uτ , uπ) = t1u
−2
π , (uσ, uτ ) = 1,

and for all 2 ≤ k ≤ ℓ, (t2k, t2k+1) is a quaternion algebra with the standard

generators uγ2k
, uγ2k+1

.

We claim that the exponent of D is equal 2n. Indeed, by [2, Theorem 13],

the algebra D1 is isomorphic to a tensor product of two cyclic algebras, namely

D1
∼= (K(uπ)τ , σ, t2) ⊗ C,

where C is a quaternion algebra. Using the arguments of Case I we get that

the exponent of the cyclic algebra (K(uπ)τ , σ, t2) is 2n. Thus the claim follows.

Suppose that D ∼= KβH for some H and β ∈ H2(H, K×). Arguing as in

Case I, we conclude that the group H is of the form

(Z2m+1 ⋊ (Z2m × Z2)) × Z2 × Z2 × · · · × Z2 × Z2.

First, we have m ≥ n, since by [2, Theorem 13] KβH is isomorphic to a tensor

product of cyclic algebras of degrees 2m and 2, and hence KβH is of exponent

at most 2m. Next, we prove that m ≤ n. Consider the field E = K(z) where

z = u2
π/t1 is a primitive 2n+1-root of unity contained in D. We claim that E is

the maximal cyclotomic subfield of D. Indeed, the centralizer CD(E) of E in D

is easily seen to be CD(E) = K(uπ, u2n−1

σ , uγ4
, . . . , uγ2ℓ+1

), and it is of the form

CD(E) ∼= (t1z, t2) ⊗E (t4, t5) ⊗ · · · ⊗ (t2ℓ, t2ℓ+1),

where the quaternion algebras above are considered over the field E. Now,

arguing as in the previous case we see that D ⊗ F and D ⊗ E ∼ CD(E) are of

the same index and the claim follows. On the other hand, KβH contains the

cyclotomic extension KβH ′ of K and its degree is ord(H ′) = 2m. This shows

that m ≤ n. Thus we have m = n, and hence G ∼= H .

This completes the proof of Theorem 6.
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